Hersenschade en neurologische gevolgen door COVID-19 / Corona

Er zijn wereldwijd mensen die ernstige neurologische klachten of hersenletsel overhielden na ziek te zijn geweest van COVID-19. Niet alle mensen met COVID-19 houden deze lange termijn klachten over, maar het kan wel voorkomen. We hebben een aparte pagina over hersenletsel en corona, met info of mensen met hersenletsel kwetsbaarder zijn.
Lees ook onze specifieke pagina over het Post-COVID syndroom / Long COVID. Long staat hier voor langdurige klachten. Via deze link.

Een publicatie Neurology  16 november 2021:
Er zijn specifieke neurologische complicaties geassocieerd met de COVID-19-infectie.
Sommige van de mensen die in het ziekenhuis zijn opgenomen met COVID-19 kregen een CVA (beroerte) door trombose (stolsels), en er zijn patiënten die tijdens de acute fase hypercoaguleerbaarheid (stollingsstoornissen) hebben.

Er zijn enkele individuen die micro-vaatziekte ontwikkelen, in het bijzonder micro-bloedingen door de hersenen heen, op het grensgebied van grijze en witte stof.

 

30 tot 50% van de individuen die een  acute infectie met COVID-19 hadden, klagen over symptomen van de lange termijn. De meeste van deze symptomen zijn neurologisch van aard.

Deze manifestaties zijn van verschillende fenotypen met overlappende syndromen.

  • Overwegend inspannings-intolerantie.
  • Cognitieve- en stemmingsstoornissen.
  • Sommigen van de patiënten hebben acute angst of een eerste begin van psychose.
  • Er zijn anderen die dysautonomie (bloeddruk of hartslagproblemen +onwel worden) en sommige klassieke POTS als syndroom hebben.(postoraal orthostatisch tachycardie syndroom = extreme hartslagstijging bij opstaan of overeind komen.)
  • Dan is er een vierde groep waarvan hun klachten lijken op fibromyalgie en andere pijnsyndromen.
  • Ten slotte is er een kleinere groep personen die lijdt aan gehoorverlies, tinnitus (oorsuizen) en vestibulaire aandoeningen (evenwichtsproblemen).



_______________________________________

Uit een studie uit Wuhan bleek dat 36,4% van de opgenomen patiënten neurologische klachten had.

Er zijn ook mensen die juist alleen met neurologische klachten in het ziekenhuis kwamen en COVID-19 bleken te hebben, zonder typische COVID-19 klachten.

Nederlandse onderzoekers hebben ontdekt dat Corona 'het immuunsysteem in de hersenen op hol kan brengen'. Bij onderzoek bij hersenen van overleden mensen (obductie) bleken er meer 'hersenmacrofagen' in de hersenen te zien, van mensen die aan Covid-19 leden (de ziekte die door het coronavirus ontstaat) dan in gezonde hersenen. Hersenmacrofagen zijn primaire immuuncellen van het centrale zenuwstelsel en voeren permanente bewaking uit of er een infectie gaande is. Het grote aantal hersenmacrofagen toont aan dat het immuunsysteem op hol sloeg. De hersenmagrofagen zien er onder de microscoop uit als enorm veel bruine spikkels.

Een onderzoeker vertelde dat corona elke functie in de hersenen kan beïnvloeden: de zintuiglijke functies, de bewegingen, gevoel, geheugen en concentratie.


Neurologische ziektebeelden als complicatie van COVID-19:


Neurologische en neuropsychologische gevolgen genoemd na een coronabesmetting / COVID-19:

 


Neurologische klachten bij opname (NIET- typische COVID-19 klachten)

Er zijn wereldwijd mensen opgenomen in ziekenhuizen zonder specifieke COVID-19 klachten met griepsymptomen als hoesten of koorts, maar ze hadden wel typische neurologische klachten.

  1. (hoofdpijn, duizeligheid, verminderd bewustzijn, ataxie, acute  beroerte/ CVA en epilepsie)
  2. verminderd vermogen om dingen te proeven (hypogeusie), verminderd vermogen om te ruiken en om geuren te detecteren (hyposmie) en zenuwpijn/ neuropathische pijn (neuralgie)
  3. skeletspiersymptomen.

Toen deze patiënten getest werden, bleken ze wel Covid-19 te hebben. In zeldzame gevallen lijkt het er op dat het cornavirus rechtstreeks de hersenen binnen kan dringen, zegt dr. Elissa Fory, een neuroloog bij Henry Ford Health System.

Genoemde klachten (niet bij allen dezelfde klachten):

 

SARS-CoV-2, het coronavirus dat COVID-19 veroorzaakt, kan neurologische aandoeningen veroorzaken door directe infectie van de hersenen of als gevolg van de sterke activering van het immuunsysteem. Het virus kan de bloed-hersenbarrière doorbreken.


PICS
Naast de cognitieve klachten door hersenschade, kunnen klachten ook ontstaan zijn door het Post intensive care syndroom (PICS). Nieuwe of verergerde klachten die ontstaan ten gevolge van een kritieke ziekte en de intensive care behandeling.

  • Lichamelijke klachten (moeheid, verworven spierzwakte, slikstoornis, conditieverlies, kortademigheid)
  • Cognitieve klachten als verminderde aandacht en concentratie
  • Psychische problemen (angst, PTSS, depressie)
  • Prikkelgevoeligheid

Partners, familieleden en andere naasten kunnen ook PICS ontwikkelen, dat wordt het Post Intensive Care Syndroom Familie genoemd, of PICS-F.
Lees meer.

 

Check

Als je twijfelt of jij hersenletsel of cognitieve klachten overgehouden hebt aan de coronabesmetting, dan kan je een checklist NAH invullen. NAH staat voor Niet-Aangeboren Hersenletsel, dus later in het leven opgelopen hersenschade.

Lees onze specifieke pagina over het Post-COVID syndroom / Long COVID Long staat voor langdurige klachten. Via deze link.

Lotgenotencontact

De Nederlandse facebookgroep ‘Corona patiënten met langdurige klachten’ heeft bijna 18 duizend leden.

Onderzoeken over langdurige (neurologische of hersenletsel) klachten nadat iemand Covid-19 heeft doorgemaakt

'

  • Langdurige klachten na ongecompliceerde Covid-19, Nederlands Tijdschrift voor Geneeskunde.

  • Van den Borst, B. e.a., Comprehensive health assessment three months after recovery from acute COVID-19:, Clinical Infectious Diseases (21 november 2020), ciaa1750, DOI

  • Morris. S.B. e.a., Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection — United Kingdom and United States, March–August 2020, Morb Mortal Wkly Rep 2020;69: 1450–1456. DOI

  • Woodruff, M.C. e.a., Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection, medRxiv 2020.10.21.20216192; DOI

  • Oudkerk, M. e.a., Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands, Radiology 2020 297:1, E216-E222, DOI

  • https://www.practiceupdate.com/C/126949/56?elsca1=emc_enews_topic-alert

    Avindra Nath MD Published in Neurology

  • Nierfalen of verminderde nierfunctie door COVID-19

  • https://www.reuters.com/business/healthcare-pharmaceuticals/covid-raises-risk-long-term-brain-injury-large-us-study-finds-2022-09-22/

  • https://www.frontiersin.org/articles/10.3389/fnins.2022.855868/full

  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Qusti, S., Alshammari, E. M., Gyebi, G. A., and Batiha, G. E. (2021). Covid-19-induced dysautonomia: a menace of sympathetic storm. ASN Neuro 13:17590914211057635. doi: 10.1177/17590914211057635 PubMed Abstract | CrossRef Full Text | Google Scholar

  • Backman, L., Möller, M. C., Thelin, E. P., Dahlgren, D., Deboussard, C., Östlund, G., et al. (2021). Monthlong intubated patient with life-threatening COVID-19 and cerebral microbleeds suffers only mild cognitive sequelae at 8-month follow-up: a case report. Arch. Clin. Neuropsychol. 37, 531–543. doi: 10.1093/arclin/acab075

    PubMed Abstract | CrossRef Full Text | Google Scholar

  • Baig, A. M., Khaleeq, A., Ali, U., and Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998. doi: 10.1021/acschemneuro.0c00122

    PubMed Abstract | CrossRef Full Text | Google Scholar

  • ennett, I. J., and Madden, D. J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276, 187–205. doi: 10.1016/j.neuroscience.2013.11.026

    PubMed Abstract | CrossRef Full Text | Google Scholar

     

    Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., et al. (2016). Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15, 369–391. doi: 10.1007/s12311-015-0687-3

    PubMed Abstract | CrossRef Full Text | Google Scholar

     

     

    Bohmwald, K., Gálvez, N. M. S., Ríos, M., and Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Front. Cell Neurosci. 12:386. doi: 10.3389/fncel.2018.00386

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., et al. (2020). Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 251, 228–248. doi: 10.1002/path.5471

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Bussière, N., Mei, J., Lévesque-Boissonneault, C., Blais, M., Carazo, S., Gros-Louis, F., et al. (2021). Chemosensory dysfunctions induced by COVID-19 can persist up to 7 months: a study of over 700 healthcare workers. Chem. Senses. 46:bjab038. doi: 10.1093/chemse/bjab038

    PubMed Abstract | CrossRef Full Text | Google Scholar


    Caronna, E., and Pozo-Rosich, P. (2021). Headache as a symptom of COVID-19: narrative review of 1-year research. Curr. Pain Headache Rep. 25:73.

    PubMed Abstract | Google Scholar

    Cecchini, M. P., Brozzetti, L., Cardobi, N., Sacchetto, L., Gibellini, D., Montemezzi, S., et al. (2021). Persistent chemosensory dysfunction in a young patient with mild COVID-19 with partial recovery 15 months after the onset. Neurol. Sci. 43, 99–104.

    PubMed Abstract | Google Scholar

    Cecchini, M. P., Brozzetti, L., Cardobi, N., Sacchetto, L., Gibellini, D., Montemezzi, S., et al. (2022). Persistent chemosensory dysfunction in a young patient with mild COVID-19 with partial recovery 15 months after the onset. Neurol. Sci. 43, 99–104. doi: 10.1007/s10072-021-05635-y

    PubMed Abstract | CrossRef Full Text | Google Scholar


    Chakravarty, N., Senthilnathan, T., Paiola, S., Gyani, P., Castillo Cario, S., Urena, E., et al. (2021). Neurological pathophysiology of SARS-CoV-2 and pandemic potential RNA viruses: a comparative analysis. FEBS Lett. 595, 2854–2871. doi: 10.1002/1873-3468.14227

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., et al. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629. doi: 10.1172/JCI137244

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 368:m1091. doi: 10.1136/bmj.m1091

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Cipriani, G., Danti, S., Nuti, A., Carlesi, C., Lucetti, C., and Di Fiorino, M. (2020). A complication of coronavirus disease 2019: delirium. Acta Neurol. Belg. 120, 927–932. doi: 10.1007/s13760-020-01401-7

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Colonna, S., Sciumé, L., Giarda, F., Innocenti, A., Beretta, G., and Dalla Costa, D. (2020). Case report: postacute rehabilitation of guillain-barré syndrome and cerebral vasculitis-like pattern accompanied by SARS-CoV-2 infection. Front. Neurol. 11:602554. doi: 10.3389/fneur.2020.602554

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Dagenais, N. J., and Jamali, F. (2005). Protective effects of angiotensin II interruption: evidence for antiinflammatory actions. Pharmacotherapy 25, 1213–1229. doi: 10.1592/phco.2005.25.9.1213

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Davis, H. E., Assaf, G. S., McCorkell, L., Wei, H., Low, R. J., Re’em, Y., et al. (2021). Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38:101019. doi: 10.1016/j.eclinm.2021.101019

    PubMed Abstract | CrossRef Full Text | Google Scholar

    De Moraes De Medeiros, S., Vandresen, R., Gomes, E., and Mazzuco, E. (2021). Mental health and quality of life in COVID-19 survivors: a needed discussion. J. Intern. Med. 290, 744–745. doi: 10.1111/joim.13342

    PubMed Abstract | CrossRef Full Text | Google Scholar

    DeKosky, S. T., Kochanek, P. M., Valadka, A. B., Clark, R. S. B., Chou, S. H., Au, A. K., et al. (2021). Blood biomarkers for detection of brain injury in COVID-19 patients. J. Neurotrauma 38, 1–43. doi: 10.1089/neu.2020.7332

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Denehy, L., and Puthucheary, Z. (2021). Surviving COVID-19: a familiar road to recovery? Lancet Respir. Med. 9, 1211–1213. doi: 10.1016/S2213-2600(21)00447-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Dressing, A., Bormann, T., Blazhenets, G., Schroeter, N., Walter, L. I., Thurow, J., et al. (2021). Neuropsychological profiles and cerebral glucose metabolism in neurocognitive long COVID-syndrome. J. Nucl. Med. [Epub ahead of print]. doi: 10.2967/jnumed.121.262677

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Ellul, M. A., Benjamin, L., Singh, B., Lant, S., Michael, B. D., Easton, A., et al. (2020). Neurological associations of COVID-19. Lancet Neurol. 19, 767–783.

    Google Scholar

    Ermis, U., Rust, M. I., Bungenberg, J., Costa, A., Dreher, M., Balfanz, P., et al. (2021). Neurological symptoms in COVID-19: a cross-sectional monocentric study of hospitalized patients. Neurol. Res. Pract. 3:17. doi: 10.1186/s42466-021-00116-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Evans, R. A., McAuley, H., Harrison, E. M., Shikotra, A., Singapuri, A., Sereno, M., et al. (2021). Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir. Med. 9, 1275–1287. doi: 10.1016/S2213-2600(21)00383-0

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Feng, M., Li, Z., Xiong, J., Xu, W., and Xiang, B. (2021a). Geographical and epidemiological characteristics of 3,487 confirmed cases with COVID-19 among healthcare workers in China. Front. Public Health 8:586736. doi: 10.3389/fpubh.2020.586736

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Feng, M., Ling, Q., Xiong, J., Manyande, A., Xu, W., and Xiang, B. (2021b). Geographical and epidemiological characteristics of sporadic coronavirus disease 2019 outbreaks from June to December 2020 in China: an overview of environment-to-human transmission events. Front. Med. 8:654422. doi: 10.3389/fmed.2021.654422

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Feng, M., Ling, Q., Xiong, J., Manyande, A., Xu, W., and Xiang, B. (2021c). Occupational characteristics and management measures of sporadic COVID-19 outbreaks From June 2020 to January 2021 in China: the importance of tracking down “Patient Zero”. Front. Public Health 9:670669. doi: 10.3389/fpubh.2021.670669

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Filley, C. M., and Fields, R. D. (2016). White matter and cognition: making the connection. J. Neurophysiol. 116, 2093–2104. doi: 10.1152/jn.00221.2016

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Freeman, C. W., Masur, J., Hassankhani, A., Wolf, R. L., Levine, J. M., and Mohan, S. (2021). Coronavirus disease (COVID-19)-related disseminated leukoencephalopathy: a retrospective study of findings on brain MRI. Am. J. Roentgenol. 216, 1046–1047. doi: 10.2214/AJR.20.24364

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Fugate, J. E., and Rabinstein, A. A. (2015). Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol. 14, 914–925. doi: 10.1016/S1474-4422(15)00111-8

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Garrigues, E., Janvier, P., Kherabi, Y., Le Bot, A., Hamon, A., Gouze, H., et al. (2020). Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81, e4–e6. doi: 10.1016/j.jinf.2020.08.029

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Gewirtz, A. N., Gao, V., Parauda, S. C., and Robbins, M. S. (2021). Posterior reversible encephalopathy syndrome. Curr. Pain Headache Rep. 25:19.

    Google Scholar

    Guedj, E., Campion, J. Y., Dudouet, P., Kaphan, E., Bregeon, F., Tissot-Dupont, H., et al. (2021). (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl Med. Mol. Imaging 48, 2823–2833. doi: 10.1007/s00259-021-05215-4

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Han, K. M., and Ham, B. J. (2021). How inflammation affects the brain in depression: a review of functional and structural MRI studies. J. Clin. Neurol. 17, 503–515. doi: 10.3988/jcn.2021.17.4.503

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Haqiqi, A., Samuels, T. L., Lamb, F. J., Moharrum, T., and Myers, A. E. (2021). Acute haemorrhagic leukoencephalitis (Hurst disease) in severe COVID- 19 infection. Brain Behav. Immun. Health 12:100208. doi: 10.1016/j.bbih.2021.100208

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Hazzaa, N. M. (2021). Neurological complications associated with coronavirus disease-2019 (COVID-19): MRI features. Heliyon 7:e07879. doi: 10.1016/j.heliyon.2021.e07879

    PubMed Abstract | CrossRef Full Text | Google Scholar

    He, Z., Xiang, H., Manyande, A., Xu, W., Fan, L., and Xiang, B. (2021). Epidemiological characteristics of sporadic nosocomial COVID-19 infections from June 2020 to June 2021 in China: an overview of vaccine breakthrough infection events. Front. Med. 8:736060. doi: 10.3389/fmed.2021.736060

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Heesakkers, H., van der Hoeven, J. G., Corsten, S., Janssen, I., Ewalds, E., Burgers-Bonthuis, D., et al. (2022). Mental health symptoms in family members of COVID-19 ICU survivors 3 and 12 months after ICU admission: a multicentre prospective cohort study. Intensive Care Med. 48, 322–331. doi: 10.1007/s00134-021-06615-8

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Hellgren, L., Birberg Thornberg, U., Samuelsson, K., Levi, R., Divanoglou, A., and Blystad, I. (2021). Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study. BMJ Open 11:e055164. doi: 10.1136/bmjopen-2021-055164

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Hixon, A. M., Thaker, A. A., and Pelak, V. S. (2021). Persistent visual dysfunction following posterior reversible encephalopathy syndrome due to COVID-19: case series and literature review. Eur. J. Neurol. 28, 3289–3302. doi: 10.1111/ene.14965

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., et al. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232.

    Google Scholar

    Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.

    Google Scholar

    Ismail, I. I., and Gad, K. A. (2021). Absent blood oxygen level-dependent functional magnetic resonance imaging activation of the orbitofrontal cortex in a patient with persistent cacosmia and cacogeusia after COVID-19 infection. JAMA Neurol. 78, 609–610. doi: 10.1001/jamaneurol.2021.0009

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Kanberg, N., Simrén, J., Edén, A., Andersson, L. M., Nilsson, S., Ashton, N. J., et al. (2021). Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 70:103512. doi: 10.1016/j.ebiom.2021.103512

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Kandemirli, S. G., Dogan, L., Sarikaya, Z. T., Kara, S., Akinci, C., Kaya, D., et al. (2020). Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 297, E232–E235. doi: 10.1148/radiol.2020201697

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Kas, A., Soret, M., Pyatigoskaya, N., Habert, M. O., Hesters, A., Le Guennec, L., et al. (2021). The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur. J. Nucl. Med. Mol. Imaging 48, 2543–2557. doi: 10.1007/s00259-020-05178-y

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Kumar, A., Narayan, R. K., Kumari, C., Faiq, M. A., Kulandhasamy, M., Kant, K., et al. (2020). SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med. Hypotheses. 145:110320. doi: 10.1016/j.mehy.2020.110320

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Lang, M., Chang, Y. S., Mehan, W. A. Jr., Rincon, S. P., and Buch, K. (2021). Long-term neuroimaging follow-up of COVID-19-related leukoencephalopathy. Neuroradiology 63, 2153–2156. doi: 10.1007/s00234-021-02829-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R., Horoi, M., Le Bon, S. D., Rodriguez, A., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 277, 2251–2261. doi: 10.1007/s00405-020-05965-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Li, Z., Liu, T., Yang, N., Han, D., Mi, X., Li, Y., et al. (2020). Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 14, 533–541. doi: 10.1007/s11684-020-0786-5

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Liang, L., Yang, B., Jiang, N., Fu, W., He, X., Zhou, Y., et al. (2020). Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J. Korean Med. Sci. 35:e418. doi: 10.3346/jkms.2020.35.e418

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Lindan, C. E., Mankad, K., Ram, D., Kociolek, L. K., Silvera, V. M., Boddaert, N., et al. (2021). Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. Lancet Child Adolesc. Health 5, 167–177. doi: 10.1016/S2352-4642(20)30362-X

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Lu, Y., Li, X., Geng, D., Mei, N., Wu, P. Y., Huang, C. C., et al. (2020). Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 25:100484. doi: 10.1016/j.eclinm.2020.100484

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Luo, H., Gao, Y., Zou, J., Zhang, S., Chen, H., Liu, Q., et al. (2020). Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin. Med. 15:94. doi: 10.1186/s13020-020-00375-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mahammedi, A., Saba, L., Vagal, A., Leali, M., Rossi, A., Gaskill, M., et al. (2020). Imaging of neurologic disease in hospitalized patients with COVID-19: an italian multicenter retrospective observational study. Radiology 297, E270–E273. doi: 10.1148/radiol.2020201933

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mainland, J. D., Johnson, B. N., Khan, R., Ivry, R. B., and Sobel, N. (2005). Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril. J. Neurosci. 25, 6362–6371. doi: 10.1523/JNEUROSCI.0920-05.2005

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Malik, P., Patel, K., Pinto, C., Jaiswal, R., Tirupathi, R., Pillai, S., et al. (2022). Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-A systematic review and meta-analysis. J. Med. Virol. 94, 253–262. doi: 10.1002/jmv.27309

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690. doi: 10.1001/jamaneurol.2020.1127

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mayi, B. S., Leibowitz, J. A., Woods, A. T., Ammon, K. A., Liu, A. E., and Raja, A. (2021). The role of Neuropilin-1 in COVID-19. PLoS Pathog. 17:e1009153. doi: 10.1371/journal.ppat.1009153

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mazza, M. G., De Lorenzo, R., Conte, C., Poletti, S., Vai, B., Bollettini, I., et al. (2020). Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 89, 594–600. doi: 10.1016/j.bbi.2020.07.037

    PubMed Abstract | CrossRef Full Text | Google Scholar

    McMahon, P. J., Panczykowski, D. M., Yue, J. K., Puccio, A. M., Inoue, T., Sorani, M. D., et al. (2015). Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma 32, 527–533. doi: 10.1089/neu.2014.3635

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., et al. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175. doi: 10.1038/s41593-020-00758-5

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mifflin, L., Ofengeim, D., and Yuan, J. (2020). Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571. doi: 10.1038/s41573-020-0071-y

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Miners, S., Kehoe, P. G., and Love, S. (2020). Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res. Ther. 12:170. doi: 10.1186/s13195-020-00744-w

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., et al. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 94, 55–58. doi: 10.1016/j.ijid.2020.03.062

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Mumoli, N., Vitale, J., and Mazzone, A. (2020). Clinical immunity in discharged medical patients with COVID-19. Int. J. Infect. Dis. 99, 229–230. doi: 10.1016/j.ijid.2020.07.065

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Nuzzo, D., Cambula, G., Bacile, I., Rizzo, M., Galia, M., Mangiapane, P., et al. (2021). Long-term brain disorders in post COVID-19 neurological syndrome (PCNS) patient. Brain Sci. 11:454. doi: 10.3390/brainsci11040454

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P., et al. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med. 382:e60. doi: 10.1056/NEJMc2009787

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Pan, Y., Gao, F., Zhao, S., Han, J., and Chen, F. (2021). Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin. Exp. Pharmacol. Physiol. 48, 637–650. doi: 10.1111/1440-1681.13483

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Pezzini, A., and Padovani, A. (2020). Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 16, 636–644. doi: 10.1038/s41582-020-0398-3

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615.

    Google Scholar

    Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S., and Griffith, B. (2020). COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296, E119–E120. doi: 10.1148/radiol.2020201187

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Pucci, F., Annoni, F., Dos Santos, R. A. S., Taccone, F. S., and Rooman, M. (2021). Quantifying renin-angiotensin-system alterations in COVID-19. Cells 10:2755. doi: 10.3390/cells10102755

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Qin, Y., Wu, J., Chen, T., Li, J., Zhang, G., Wu, D., et al. (2021). Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Invest. 131:e147329. doi: 10.1172/JCI147329

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Radmanesh, A., Raz, E., Zan, E., Derman, A., and Kaminetzky, M. (2020). Brain imaging use and findings in COVID-19: a single academic center experience in the epicenter of disease in the United States. Am. J. Neuroradiol. 41, 1179–1183. doi: 10.3174/ajnr.A6610

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Ragheb, J., McKinney, A., Zierau, M., Brooks, J., Hill-Caruthers, M., Iskander, M., et al. (2021). Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: a cohort study. BMJ Open 11:e050045. doi: 10.1136/bmjopen-2021-050045

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Reynolds, J. L., and Mahajan, S. D. (2021). SARS-COV2 Alters Blood Brain Barrier Integrity Contributing to Neuro-Inflammation. J. Neuroimmune Pharmacol. 16, 4–6. doi: 10.1007/s11481-020-09975-y

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Rhally, A., Griffa, A., Kremer, S., Uginet, M., Breville, G., Stancu, P., et al. (2021). C-reactive protein and white matter microstructural changes in COVID-19 patients with encephalopathy. J. Neural Transm. 128, 1899–1906. doi: 10.1007/s00702-021-02429-6

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Rocha, N. P., Simões, E. S. A. C., and Teixeira, A. L. (2021). Editorial: the role of the renin-angiotensin system in the central nervous system. Front. Neurosci. 15:733084. doi: 10.3389/fnins.2021.733084

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Rodríguez-Alfonso, B., Ruiz Solís, S., Silva-Hernández, L., Pintos Pascual, I., Aguado Ibáñez, S., and Salas Antón, C. (2021). (18)F-FDG-PET/CT in SARS-CoV-2 infection and its sequelae. Rev. Esp. Med. Nucl. Imagen. Mol. 40, 299–309. doi: 10.1016/j.remnie.2021.07.005

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., et al. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627. doi: 10.1016/S2215-0366(20)30203-0

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Rudroff, T., Workman, C. D., and Ponto, L. L. B. (2021). 18 F-FDG-PET imaging for post-COVID-19 brain and skeletal muscle alterations. Viruses 13:2283. doi: 10.3390/v13112283

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Ruggiero, R. N., Rossignoli, M. T., Marques, D. B., de Sousa, B. M., Romcy-Pereira, R. N., Lopes-Aguiar, C., et al. (2021). Neuromodulation of hippocampal-prefrontal cortical synaptic plasticity and functional connectivity: implications for neuropsychiatric disorders. Front. Cell Neurosci. 15:732360. doi: 10.3389/fncel.2021.732360

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Sanches, M., and Teixeira, A. L. (2021). The renin-angiotensin system, mood, and suicide: are there associations? World J. Psychiatry 11, 581–588. doi: 10.5498/wjp.v11.i9.581

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Sierra, C., Coca, A., Gómez-Angelats, E., Poch, E., Sobrino, J., and de la Sierra, A. (2002). Renin-angiotensin system genetic polymorphisms and cerebral white matter lesions in essential hypertension. Hypertension 39, 343–347. doi: 10.1161/hy02t2.102912

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Solis, W. G., Waller, S. E., Harris, A. K., Sugo, E., Hansen, M. A., and Lechner-Scott, J. (2017). Favourable outcome in a 33-year-old female with acute haemorrhagic leukoencephalitis. Case Rep. Neurol. 9, 106–113. doi: 10.1159/000472706

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Sooksawasdi Na Ayudhya, S., Laksono, B. M., and van Riel, D. (2021). The pathogenesis and virulence of enterovirus-D68 infection. Virulence 12, 2060–2072. doi: 10.1080/21505594.2021.1960106

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Soriano, J. B., Murthy, S., Marshall, J. C., Relan, P., and Diaz, J. V. (2022). A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107. doi: 10.1016/S1473-3099(21)00703-9

    CrossRef Full Text | Google Scholar



    Strauss, S. B., Lantos, J. E., Heier, L. A., Shatzkes, D. R., and Phillips, C. D. (2020). Olfactory bulb signal abnormality in patients with COVID-19 who present with neurologic symptoms. Am. J. Neuroradiol. 41, 1882–1887. doi: 10.3174/ajnr.A6751

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Teaima, A. A., Salem, O. M., Teama, M., Mansour, O. I., Taha, M. S., Badr, F. M., et al. (2021). Patterns and clinical outcomes of olfactory and gustatory disorders in six months: prospective study of 1031 COVID-19 patients. Am. J. Otolaryngol. 43:103259. doi: 10.1016/j.amjoto.2021.103259

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Teijaro, J. R., Walsh, K. B., Cahalan, S., Fremgen, D. M., Roberts, E., Scott, F., et al. (2011). Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991. doi: 10.1016/j.cell.2011.08.015

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., et al. (2020). Hematological findings and complications of COVID-19. Am. J. Hematol. 95, 834–847. doi: 10.1002/ajh.25829

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Teuwen, L. A., Geldhof, V., Pasut, A., and Carmeliet, P. (2020). COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 20, 389–391. doi: 10.1038/s41577-020-0343-0

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Thye, A. Y., Law, J. W., Pusparajah, P., Letchumanan, V., Chan, K. G., and Lee, L. H. (2021). Emerging SARS-CoV-2 variants of concern (VOCs): an impending global crisis. Biomedicines 9:1303. doi: 10.3390/biomedicines9101303

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Troyer, E. A., Kohn, J. N., and Hong, S. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 87, 34–39. doi: 10.1016/j.bbi.2020.04.027

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N. W. S., Pollak, T. A., Tenorio, E. L., et al. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882. doi: 10.1016/S2215-0366(20)30287-X

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418. doi: 10.1016/S0140-6736(20)30937-5

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Wang, L., de Kloet, A. D., Pati, D., Hiller, H., Smith, J. A., Pioquinto, D. J., et al. (2016). Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 105, 114–123. doi: 10.1016/j.neuropharm.2015.12.026

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Wenzel, J., Lampe, J., Müller-Fielitz, H., Schuster, R., Zille, M., Müller, K., et al. (2021). The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533. doi: 10.1038/s41593-021-00926-1

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Witvoet, E. H., Jiang, F. Y., Laumans, W., and de Bruijn, S. (2021). COVID-19-related diffuse leukoencephalopathy with microbleeds and persistent coma: a case report with good clinical outcome. BMJ Case Rep. 14:e242504. doi: 10.1136/bcr-2021-242504

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.

    Google Scholar

    Xiang, B., Li, P., Yang, X., Zhong, S., Manyande, A., and Feng, M. (2020). The impact of novel coronavirus SARS-CoV-2 among healthcare workers in hospitals: an aerial overview. Am. J. Infect. Control. 48, 915–917. doi: 10.1016/j.ajic.2020.05.020

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Xiong, Q., Xu, M., Li, J., Liu, Y., Zhang, J., Xu, Y., et al. (2021). Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin. Microbiol. Infect. 27, 89–95. doi: 10.1016/j.cmi.2020.09.023

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Xu, G., Li, Y., Zhang, S., Peng, H., Wang, Y., Li, D., et al. (2021). SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res. 31, 1230–1243. doi: 10.1038/s41422-021-00578-7

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Xydakis, M. S., Albers, M. W., Holbrook, E. H., Lyon, D. M., Shih, R. Y., Frasnelli, J. A., et al. (2021). Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 20, 753–761. doi: 10.1016/S1474-4422(21)00182-4

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Yaghi, S., Ishida, K., Torres, J., Mac Grory, B., Raz, E., Humbert, K., et al. (2020). CoV-2 and stroke in a New York healthcare system. Stroke 51, 2002–2011. doi: 10.1161/strokeaha.120.030335

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Yeahia, R., Schefflein, J., Chiarolanzio, P., Rozenstein, A., Gomes, W., Ali, S., et al. (2022). Brain MRI findings in COVID-19 patients with PRES: a systematic review. Clin. Imaging 81, 107–113. doi: 10.1016/j.clinimag.2021.10.003

    PubMed Abstract | CrossRef Full Text | Google Scholar



    Yildiz-Yesiloglu, A., and Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 969–995. doi: 10.1016/j.pnpbp.2006.03.012

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Yin, J., Li, C., Ye, C., Ruan, Z., Liang, Y., Li, Y., et al. (2022). Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput. Struct. Biotechnol. J. 20, 824–837. doi: 10.1016/j.csbj.2022.01.026

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Zhang, X., Wang, F., Shen, Y., Zhang, X., Cen, Y., Wang, B., et al. (2021). Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw. Open 4:e2127403. doi: 10.1001/jamanetworkopen.2021.27403

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Zheng, J. L., Li, G. Z., Chen, S. Z., Wang, J. J., Olson, J. E., Xia, H. J., et al. (2014). Angiotensin converting enzyme 2/Ang-(1-7)/mas axis protects brain from ischemic injury with a tendency of age-dependence. CNS Neurosci. Ther. 20, 452–459. doi: 10.1111/cns.12233

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Zhou, F., Tao, M., Shang, L., Liu, Y., Pan, G., Jin, Y., et al. (2021). Assessment of sequelae of COVID-19 nearly 1 year after diagnosis. Front. Med. 8:717194. doi: 10.3389/fmed.2021.717194

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. doi: 10.1038/s41586-020-2012-7

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Zhu, Y., Cao, M., Zheng, P., and Shen, W. (2021). Residual olfactory dysfunction in coronavirus disease 2019 patients after long term recovery. J. Clin. Neurosci. 93, 31–35. doi: 10.1016/j.jocn.2021.07.050

    PubMed Abstract | CrossRef Full Text | Google Scholar

    Ziaka, M., and Exadaktylos, A. (2021). Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit. Care 25:358. doi: 10.1186/s13054-021-03778-0

    PubMed Abstract | CrossRef Full Text | Google Scholar

'

Relevante betrouwbare sites over Covid-19


ACE2 is een eiwit dat betrokken is bij de regulering van de bloeddruk en is de receptor die het virus gebruikt om cellen binnen te komen en te infecteren.
ACE2 is te vinden op de binnenwand (endotheelcellen) van de bloedvaten. De menselijke hersencellen hebben het ACE2-eiwit aan de oppervlakte. Infectie van endotheelcellen kan het virus laten overgaan van de luchtwegen naar het bloed en dan voorbij de bloed-hersenbarrière naar de hersenen.

Eenmaal in de hersenen kan vermenigvuldiging van het virus neurologische stoornissen veroorzaken.

 

Recente studies hebben het nieuwe coronavirus gevonden in de hersenen van mensen die overleden waren aan COVID-19.
Er is ook gesuggereerd dat besmetting van reukneuronen in de neus het virus in staat kan stellen zich te verspreiden van de luchtwegen naar de hersenen.